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Abstract

In molecular communication small particles such as molecules are used to convey information.

These particles are released by a transmitter into a fluidic environment, where they propagate freely

(e.g. through diffusion) or through externals means (e.g. different types of active transport) until they

arrive at the receiver. Although there are a number of different mathematical models for the diffusion-

based molecular communication, active transport molecular communication (ATMC) lacks the necessary

theoretical framework. Previous works had to rely almost entirely on full Monte Carlo simulations

of these systems. However, full simulations can be time consuming because of the computational

complexities involved. In this work, a Markov channel model has been presented, which could be

used to reduce the amount of simulations necessary for studying ATMC without sacrificing accuracy.

Moreover, a mathematical formula for calculating the transition probabilities in the Markov chain model

is derived to complete our analytical framework. Comparing our proposed models with full simulations,

it is shown that these models can be used to calculate parameters such channel capacity accurately in

a timely manner.
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I. INTRODUCTION

Advancements in the field of nanotechnology are leading to micro- or nano-scale devices,

typically performing only very simple and specific tasks due to limitations imposed by their

small size [1]. This rapid progress is motivated by many potential applications such as: targeted

drug delivery [2], nanorobotics [3], lab-on-chip devices [4], and point-of-care diagnostic chips

[5]. In most of these applications communication between different components in each device,

or between a biological entity and a component in the device, such as a nanosensor, is required.

Therefore, one of the obstacles that must be overcome before many of these applications can be

fully realized is devising a communication system for small scales [6], [7].

Conventional communication systems rely entirely on electronic or electromagnetic signals,

and are typically used to carry information over distances ranging from a few centimetres (in

Bluetooth technology) to millions of kilometres (for space communication). However, shrinking

the current technology to very small dimensions (in the order of a few micrometers or even a few

nanometres) is not a simple task. For example, shrinking the size of a transceiver antenna to nano-

scales is difficult because the length of the antenna must be proportional to the wavelength of the

carrier signal. To overcome this issue two different techniques have been proposed: electronic

or electromagnetic communication with the help of novel materials such as carbon nanotubes

[8], or molecular communication [9], [10].

In molecular communication small particles such as molecules are used to convey information.

Information can be conveyed through encoding messages into the release timing [11], number

[12], [13], concentration [14], or type of particles [15], which are released by a transmitter and

propagate to a receiver. Two different propagation schemes can be employed: passive transport,

and active transport. In passive transport, the information carrying particles propagate from

the transmitter to the receiver by diffusing in the microfluidic medium without using external

energy. In active transport molecular communication (ATMC), information carrying particles are

transported by external means such as molecular motors or an external device such as a syringe

pump. In [13], it was shown that active transport can achieve better information transmission

rates over larger separation between the transmitter and the receiver. Therefore, in this work we

consider active transport propagation scheme.

One of the biggest issues in designing and engineering molecular communication systems is
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the lack of theoretical framework [16]. The theory of communication, which has been devised

by communication engineers over the past century can not be applied directly to molecular

communication. In the traditional communication paradigm, communication channels are always

corrupted by noise. For example, thermal noise is always present in electronic devices. This noise

introduces randomness into the communication channel. In molecular communication, the noise

stems from the random nature of the propagation mechanism, which introduces uncertainty into

the channel. Moreover, in confined channels analytical expression for this random propagation

do not exist and are very difficult to derive, especially for ATMC.

A number of previous works have considered modeling the molecular communication chan-

nels. Most works focus on passive transport propagation schemes. Notable works in this direction

include a general formulation of molecular communication as a timing channel under Brownian

motion [17], [18], development of mathematical channel models for continuous diffusion [19],

[20], introduction of binary concentration-encoded molecular communication [14], derivation of

deterministic capacity expression for point-to-point, broadcast, and multiple-access molecular

channels [21], capacity of molecular relay channels [22], closed-form expression for free diffu-

sion propagation [23], modeling the noise in diffusion-based molecular communication [24], [25],

stochastic model for channels with absorption, duplication and spontaneous emission phenomena

[26], and modulation techniques using isomers as messenger molecules via diffusion [27].

Notable works concerning molecular motor based ATMC includes an analysis of information

transfer rates using molecular motors [11], [28], a simple mathematical transport model for active

transport propagation [29], optimization of the transmission zone and vesicular encapsulation

[12], and design and optimization of the channel [30]–[32]. Finally, in [13], [33], [34], achievable

information rates are compared under different propagation schemes. It is shown that active

transport can achieve better information transmission rates.

Most previous works on ATMC rely on computer simulations to calculate quantities such

as channel capacity. This follows because of the complex randomness associated with the

propagation in confined spaces, which makes derivation of closed-form expressions difficult,

especially when active transport propagation is used. The computer simulations can be time

consuming, and could take days before simulation results could be obtained. Typically the

computational complexities of these simulations increase as the size of the channel, or the

number of information particles increase. Moreover, as the simulations become more realistic, the
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computational complexities increase quickly. Therefore, solving complex design and optimization

problems become time-consuming, tedious, and in some cases impossible. To remedy this

problem, computationally efficient simulations and mathematical models are needed.

In this work we consider active transport propagation scheme where microtubule (MT) fila-

ments moving over stationary kinesin [35], [36] are used to transfer the information particles

from the transmitter to the receiver. We derive a Markov chain channel model for this propagation

scheme, which reduces the amount of simulations required for characterizing the channel. Our

contributions are as follows:

• Since ATMC channels with multiple MTs are very difficult to model due to dependencies

between each MT, we first derive a Markov chain model for ATMC channel with a single

MT. Although the same authors presented a simple mathematical channel model for ATMC

with a single MT in [29], which was used to optimize the shape of the transmission zone,

the new Markov chain model is much more accurate. For example, the model in [29] does

not capture the effect that an MT can load multiple particles, whereas the new Markov

chain model captures this effect.

• In practice, ATMC channels contain multiple MTs. Therefore, a Markov chain model for

ATMC channels with multiple MTs is derived for reducing the amount of computational

power required for calculating different channel parameters such as channel capacity.

• The Markov chain models for both single and multi-MT channels significantly reduce the

simulation times required for characterizing the channel. The reduction in simulation times

helps in solving design and engineering problems such as finding the shape of the optimal

channel.

• The presented models are expandable and more realistic assumptions can be incorporated

in these Markov chain models in the future.

The Markov chain models presented in this work can be considered as an analytical toolbox,

and help in designing ATMC systems. Moreover, the new models provide new insights about

ATMC channels, and can be potentially extended to other propagation schemes.

The rest of this paper is organized as follows. In Section II, an overview of the ATMC

employing stationary kinesin and moving MT filaments is considered. In Section III a general

information transmission model for this class of molecular communication systems is presented.

In Section IV we derive our new Markov chain channel models, which can be used to characterize
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the channel in a computationally efficient manner. The results comparing our newly proposed

Markov chain models and full simulations used in previous works are presented in Section V.

Finally, we present our concluding remarks and future works in Section VI.

II. ACTIVE TRANSPORT MOLECULAR COMMUNICATION

In this work we consider active transport propagation scheme, similar to the ones in [33]–[35],

where MT filaments gliding over a kinesin-covered substrate are used to transfer the information

particles from a transmitter to a receiver. In cells, MTs act as railways and kinesin is a molecular

motor that acts as a locomotive carrying cargo from one location in the cell to another location

by practically “walking” over the MT cytoskeleton structure that covers the inside of the cell.

Each kinesin step is powered by hydrolysis of one molecule of adenosine triphosphate (ATP).

In [37], it was demonstrated that stationary kinesin can be used for MT filament motility.

Moreover, in [35] it was demonstrated that using kinesin covered substrates and gliding MT

filaments, which can be chemically prepared with relative ease, vesicles can be transported from

one location to another. This makes ATMC using stationary kinesin (attached to a substrate)

with gliding MT filaments on top very attractive for on-chip molecular communication [38]. We

define the microchannel as a kinesin covered substrate, where the MTs can glide over the kinesin,

and transport information particles from one location to another. Because the MT filaments glide

right over the kinesin, the microchannel can be modelled as a 2-D environment viewed from the

top. In this paper we assume that the shape of the microchannel can be rectangular, or a regular

convex polygon viewed from the top. Regular convex polygons are equiangular (all angles are

equal in measure) and equilateral (all sides have the same length). This class of polygons includes

geometric shapes, ranging from an equilateral triangle, square, pentagon, and hexagon, all the

way up to a circle as number of sides approaches infinity.

Although mathematical channel models we derive do not depend on the shape of the channel,

we verify our models using these shapes only; partly because in [31], [32] we show that square

and circular shaped channels are optimal for this type of active transport.

A. Modeling the Microtubule Motility

MT motion is random, and a closed-form expression for the movement of MT in confined space

does not exist. Therefore, to study molecular communication systems based on this propagation
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scheme, Monte-Carlo techniques proposed in [39] must be used to simulate the motion of the

MT. In [40] it was shown that when an MT collides with the walls of the channel, it can glide

along the channel walls. Moreover, when there are multiple MTs in the channel we can assume

that the MTs do not collide with each other, and simply pass along each other. This is a valid

assumption based on experimental observations in [36], and follows since the width of the MT

filaments are only tens of nanometers thick.

Recall that the MTs move only in the x–y directions, and do not move in the z direction

(along the height of the channel). Then motion of the MT can be modelled by discretizing time

in to intervals of ∆τ seconds. Given some initial position (x0, y0) at time t = 0, for any integer

k > 0, the motion of the MT is given by the sequence of coordinates (xi, yi) for i = 1, 2, . . . , k.

Each coordinate (xi, yi) represents the position of the MT’s head at the end of the time t = i∆τ ,

and it is related to the position of the MT at the previous time step by

xi = xi−1 + ∆r cos θi, (1)

yi = yi−1 + ∆r sin θi, (2)

where ∆r is the step size represented as an iid Gaussian random variable with mean and variance

E[∆r] = vavg∆τ, (3)

Var[∆r] = 2D∆τ, (4)

with the vavg being the average velocity of the MT, and D being the MT’s diffusion coefficient.

The angle θi is no longer independent from step to step: instead, for some step-to-step angular

change ∆θ, we have that

θi = ∆θ + θi−1. (5)

Now, for each step, ∆θ is an iid Gaussian-distributed random variable with mean and variance

E[∆θ] = 0, (6)

Var[∆θ] =
vavg∆τ

Lp
, (7)

where Lp is the persistence length of the MT’s trajectory. Using this model, the motion of the

MT over a time period T can be simulated using Monte Carlo method. This model is the basis

of all Monte Carlo simulations used in this work.
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Fig. 1: Depiction of the communication environment [12].

B. ATMC Channel

Regardless of the shape of the microchannel, an area of the channel is designated as the

transmission zone (where the transmitted particles originate), and an area is designated as the

receiver zone (where the transmitted particles are destined). After information particles are

released by the transmitter, they are assumed to be anchored to the transmission zone through

deoxyribonucleic acid (DNA) hybridization bonds. The particles remain anchored until DNA

covered MT filaments, moving over molecular motor tracks that cover the whole environment,

load them through DNA hybridization bonds. For the loading to take place, an MT must pass

close to the anchored particles. The loaded particles are then unloaded when the MT reaches

the receiver zone. Again DNA hybridization is used for the unloading process. In [35], [36], the

feasibility of the anchoring, loading, transportation, and the unloading process is demonstrated

using laboratory experiments. This process is summarized in Figure 1.

Because studying ATMC channels using laboratory experimentation can be very laborious and

time consuming, computer simulation have been used in previous works [10]. To simulate this

channel, along with its corresponding loading process, the grid loading mechanism proposed

in [12] is employed. In this scheme the transmission zone is divided into a square grid, where

the length of each square in the grid is the same as the diameter of the information particles.

These particles are then assumed to be randomly and uniformly distributed among the squares

in the grid. In general, it is assumed that the MTs can load multiple particles, and the number

of particles an MT can load is related to its length, which we know to be possible based on lab

experiments [36]. This follows because after a maximum number of particles are loaded, there

will be no more room available along the length of the MT for any other information particles.
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Fig. 2: Depiction of the simulation environment (i.e. ATMC channel viewed from the top). The

squares along the wall of the channel on the left represent the transmission zone. The squares

with a circle inside represent the grid locations where there is an anchored information particle.

Thus, if an MT enters a square which is occupied by a particle, and it has an empty loading

slot available, it loads that particle. In our simulations we assume the size of the information

particles is 1µm, the length of the MTs is 10µm and the maximum number of particles an MT

can load is 5. We select these parameters based on laboratory experiments. For unloading, it is

assumed that all the loaded particles are unloaded as soon as an MT enters the receiver zone.

Figure 2 shows this simulation environment, where an MT starts from the center of an octagon-

shaped channel (8-sided regular polygon), and moves to the grid transmission structure on the

left. The grid transmission zone is along the left walls of the channel and it is represented by

all the squares. The squares with a circle inside represent the grid locations where there is an

anchored information particle. In [13] it was shown that the optimal design for the transmission

zone is along the walls of the channel. Therefore, in this work we always assume that the

transmission zone is along the left walls of the channel, and the receiver zone is on the right

side of the channel. As the MT enter the transmission zone, it picks up five information particles

(in the figure, the color of the MT trajectory turns green after the first particle is loaded), and

continues its path to the right until the picked up particles are unloaded at the receiver zone.
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III. INFORMATION TRANSMISSION MODEL FOR ATMC

In molecular communication, messages can be encoded into information carrying particles

using different schemes. For example, information can be encoded into the number, concentration,

or type of the particles released. Regardless of the encoding scheme, information is transmitted

through mass transfer (i.e. transfer of particles). In this work, we are not concerned with the

encoding scheme used and instead we consider a general mass transfer model. We then derive a

Markov chain channel model for ATMC based on this general framework, which is independent

of the encoding scheme. Later in the Results section, to verify the performance of our models,

we assume that the information is encoded in the number of information particles transmitted.

A predefined amount of time T representing the time duration for a single message transmis-

sion session is defined as time per channel use (TPCU). Given this time limit, the transmitted

message might not be perfectly conveyed to the receiver because particles are delivered by MTs

and they follow a random motion. It is possible that some of the particles will not arrive at the

receiver after T has elapsed and therefore there is some information loss. This effect is similar

in nature to the noise introduced by conventional electronic or electromagnetic channels.

Let X = {0, 1, 2, · · · , xmax} be the set of possible particles that could be released by the

transmitter, where xmax is the maximum number of particles the transmitter can release per

channel use. Let X ∈ X be the number of information particles released into the medium

by the transmitter, and let Y (T ) ∈ X represent the number that arrive at the destination after

TPCU duration T . At the receiver, X is a discrete random variable given by probability mass

function (PMF) P (x). Similarly, given X particles were released by the transmitter, and the

TPCU duration T , Y (T ) is a discrete random variable given by conditional PMF P (y(T ) | x).

This conditional PMF is very important, and characterizes the ATMC channel. For example,

it can be used to calculate parameters such as channel capacity [41], the maximum rate at which

any communication system can reliably transmit information over a noisy channel. However,

finding the PMF P (y(T ) | x) is non-trivial because the shape and the geometry of the molecular

communication channels, plus the complex random motion of the MTs, generally rule out

closed-form solutions. To overcome this issue, in previous works this PMF was estimated using

Monte Carlo simulations presented in Algorithm 1. However, these simulations tend to be time

consuming: the running time of Algorithm 1 is O(L T
∆τ
NxmaxQ), where Q is the number of MTs
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present in the channel being simulated, and L computational complexity overhead of simulating

the loading and the unloading processes (line 7 of the algorithm). In this work we present a set

of Markov chain models that can be used to calculate this PMF in a computationally efficient

manner.

Algorithm 1 Monte Carlo simulation algorithm for calculating P (y(T ) | x).
1: for each value of x ∈ X do

2: for 1 to number of Monte Carlo trials N do

3: t← 0

4: distribute information particles randomly in the grid transmission zone, and randomly

select the starting location and the direction of motion of the MT(s).

5: while t ≤ T do

6: simulate the MT(s) motion in the channel for time step of ∆τ seconds using Equations

(1-2)

7: check and perform the loading and the unloading operations if necessary

8: t← t+ ∆τ

9: end while

10: save the obtained results for the current Monte Carlo trial

11: end for

12: end for

IV. MARKOV CHAIN MODEL OF ATMC CHANNELS

Deriving a channel model for ATMC with stationary kinesin and a single moving MT filament

is very difficult because of the complex motion of the MT and the shape of the channel. Moreover,

for ATMC channels with multiple MTs the problem becomes even more difficult because of the

dependencies between all the MTs. In this case, although the movement of the MTs themselves

can safely be considered to be independent [35], [40], the delivery of an information particle

depends on whether it has already been picked up by other MTs. Therefore, many dependencies

will be introduced into the system, which makes the derivation of mathematical models extremely

difficult. To overcome these issues, we derive our channel models in two steps. We first consider
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the case where a single MT is inside the channel. Although the problem of modeling the channel

with a single MT is still quite complex, by focusing on a single MT, the dependencies between

different MTs is eliminated and channel models that resemble closed-form expressions can be

derived. We then extend the results to channels with multiple MTs and propose a Markov chain

model, where transition probabilities can be calculated using simpler simulations compared to

full simulations of the ATMC channels used in the past.

A. Modeling ATMC Using a Single MT

For the rest of this section we assume there is a single MT inside the channel, delivering the

information particles. Therefore, an arbitrary information particle is received at the destination

if it is picked up by this MT filament from the transmission zone, and then delivered to the

receiver zone. Considering this fact, we define a single MT trip as the movement of the MT

from anywhere in the channel to the transmission zone and then the receiver zone. For example,

a single MT trip is shown in Figure 2. After the MT completes its first trip, subsequent trips are

defined as the movement of the MT from the receiver zone to the transmission zone and back.

During any trip, an MT can deliver zero or more information particles, up to its maximum load

capacity.

Let K(T ) be the total number of MT trips during the TPCU duration T , and lmax be the

maximum load capacity of the MT. Since the motion of the MT filament is random in nature,

for a given value of TPCU T , the number of trips is random and represented by the probability

mass function (PMF) P (k(T )). Therefore, the PMF P (y(T ) | x) can be written as

P (y(T ) | x) =
∑

k(T )∈K

P (y | x, k(T ))P (k(T )). (8)

This follows because the number of particles that arrive at the destination during TPCU duration

T Y (T ) depends on the number of trips the MT takes during the same TPCU duration K(T ).

From Equation (8) we can calculate P (y(T ) | x) if the PMFs P (k(T )) and P (y | x, k(T ))

are known. The first PMF P (k(T )) can be estimated using a simple Monte Carlo simulation of

the motion of the MT inside the channel. This Monte Carlo simulation is very simple compared

to the full simulations used in previous works [12], [13], because it does not include simulation

of the loading and unloading processes (lines 1, 4, 7, and 12 in Algorithm 1). Therefore, the
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computational complexity of calculating PMFs P (k(T )) is O( T
∆τ
N). To estimate the PMF P (y |

x, k(T )), we derive a Markov chain model.

Let Xi be the number of information particles at the transmission zone at the end of the ith

MT trip, Yi be the total number of information particles already delivered to the receiver at the

end of the ith MT trip, and Di be the number of information particles delivered during the ith

MT trip, for i = 1, 2, 3, . . .. Therefore, Di ∈ {0, 1, 2, · · · , lmax} is a random variable representing

the number of particles delivered during the ith trip, where lmax is the maximum load the MT

could have. Each trip is related to the next trip by the following properties

Xi = Xi−1 −Di,

Yi = Yi−1 +Di, (9)

where we assume X0 = X is the number of particles released by the transmitter at the beginning

of the communication session, and Y0 = 0 is the number of particles initially at the receiver.

We assume the number of information particles at the transmission zone and the receiver zone

at the end of each trip iteration depends only on the previous iteration. Mathematically we have

P (Yi | X, Yi−1) = P (Yi | X, Yi−1, Yi−2, · · · , Y0), (10)

which satisfies the Markov property. Therefore, given the number of information particles re-

leased by the transmitter X , Yis form a Markov Chain.

Figure 3 shows the graphical representation of this Markov chain. Each state represents the

number of information particles delivered to the receiver with state s indicating the starting

state. The transition probabilities can be calculated from the PMF P (Di|Xi−1), the probability

of the number of particles delivered during the ith trip given there were Xi−1 particles at the

transmission zone at the beginning of the trip, as follows

P (Yi = yi | X = x, Yi−1 = yi−1) =P (Di=yi−yi−1|Xi−1 =x− yi−1) yi−1≤yi≤yi−1+lmax.

0 otherwise
(11)

For the first trip, the MT can start from anywhere in the channel uniformly at random. However

for all the subsequent trips, the MT starts from the receiver zone. Therefore, to distinguish
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Fig. 3: The Markov chain representing the number of information particles received at the

destination. State s is the starting state, and each of the other states represents the number of

information particles that are delivered to the destination. We assume the maximum number of

particles a single MT can load is lmax = 2 to generate a simplified and comprehensible figure. It

is assumed that x information particles are released by the transmitter. The transition probabilities

are given by P (Di = d | Xi−1 = xi−1). The transition probabilities are different for the starting

state s, since for the first trip the MT can start its trip from anywhere in the channel, while for

subsequent trips the MT starts from the receiver.

between these two cases, we use the notation Ps(D1|X0) for the first trip, and P (Dj|Xj−1),

with j = 2, 3, . . ., for all the subsequent trips. Moreover, we assume

P (D2 = d|X1 = x) =P (D3 = d|X2 = x) = · · ·

= P (Di = d|Xi−1 = x) = · · · . (12)

This assumption is valid since the number of information particles delivered at trip iterations

greater than one, are dependent only on the number of information particles in the transmission

zone at the end of the previous iteration. The equality follows because after the first trip, each

subsequent trip starts from the receiver zone.

We define the probability transition matrix given x particles are released by the transmitter as

P(x). Equation (13) shows this (x+ 2)× (x+ 2) probability transition matrix. Each element in

the matrix is equal to 0, Ps(D1|X0), or P (Dj|Xj−1). The PMFs Ps(D1|X0) and P (Dj|Xj−1) can

be estimated from Monte Carlo simulations that are much more efficient than the full simulation

used in [12], [13]. Instead of simulating multiple MT trips, only single trip simulations are needed
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P(x) =



0 Ps(0|x) Ps(1|x) Ps(2|x) · · · Ps(lmax|x) 0 0 0 · · ·

0 P (0|x) P (1|x) P (2|x) · · · P (lmax|x) 0 0 0 · · ·

0 0 P (0|x− 1) P (1|x− 1) · · · P (lmax|x− 1) 0 0 0 · · ·

0 0 0 P (0|x− 2) · · · P (lmax|x− 2) 0 0 0 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · 0 0 0 0 0 0 P (0|2) P (1|2) P (2|2)

· · · 0 0 0 0 0 0 0 P (0|1) P (1|1)

· · · 0 0 0 0 0 0 0 0 1


(13)

for estimation of Ps(D1|X0) and P (Dj|Xj−1). Therefore in Algorithm 1, instead of using the

TPCU interval T in line 5 we use the time for a single MT trip T1trip which is typically much

smaller than T . The running time of these simulations is therefore given by O(L
T1trip

∆τ
Nxmax).

In Equation (8), we showed that when PMFs P (k(T )) and P (y | x, k(T )) are known, the

PMF P (y(T ) | x) can be calculated. The PMF P (k(T )) can be estimated using a simple Monte

Carlo simulation, while the PMF P (y | x, k(T )) can be calculated using the probability transition

matrix P(x) as

P (y | x, k(T )) = s(x)P(x)k(T ), (14)

where s(x) is the initial state distributions represented as a row vector by

s(x) = (1, 0, 0, . . . , 0︸ ︷︷ ︸
x+1

). (15)

This follows because we always assume that the Markov chain starts at state s. Substituting

Equation (14) into Equation (8), we have

P (y(T ) | x) =
∑

k(T )∈K

P (k(T ))s(x)P(x)k(T ). (16)

Therefore, the PMF P (y(T ) | x) can be estimated if P (k(T )), Ps(D1|X0) and P (Dj|Xj−1) are

known. All these three PMFs can be estimated using simple Monte Carlo simulations, where

their combined computational time would be O( T
∆τ
N + L

T1trip

∆τ
Nxmax), which is less than that

of the full simulations used in previous works.
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To further reduce the simulation time required for calculating the PMF P (y(T ) | x), we derive

an estimated mathematical expression for the transition probabilities. For simplicity, we assume

both PMFs Ps(D1|X0) and P (Dj|Xj−1) are the same (i.e. there is no difference between the first

initial trip or any subsequent trips). Therefore, for this case the state s in Figure 3 is removed

and the transition probability matrix becomes a (x+ 1)× (x+ 1) matrix. The initial state is also

changed to state 0 with probability one. To derive our model, we also assume a grid loading

structure is used to capture the loading process with n squares in the grid, where n ≥ xmax

represents the number of places (squares) where an information particle could be released from.

Moreover, a single information particle can be placed inside each square until it is picked up

by an MT. In [13], it was shown that the optimal transmission area is along the walls of the

channel. Therefore, in this work we also assume that the transmission zone is always along the

walls of the channel.

Let p
Di

be the probability that an information particle from any of the squares is delivered to

the destination during the ith MT trip. We can calculate this probability as

p
Di

= p
V
× xi−1

n
, (17)

where xi−1 is the number of information particles in the transmission zone at the end of the

previous trip, and p
V

is the probability that a square in the grid is visited during a single MT

trip. For simplicity, we assume that this probability is the same for all the squares in the grid.

The same Monte Carlo simulation which is used to estimate P (k(T )), can be used to estimate

p
V

through saving an extra parameter. Therefore, the computational complexity of calculating

P (k(T )) and p
V

together is O( T
∆τ
N).

The PMF P (Di|Xi−1) can be estimated from p
Di

as

P (Di = d | Xi−1 = xi−1) =
(
n
d

)
pd
Di

(1− p
Di

)n−d 0 ≤ d ≤ lmax − 1∑n
m=lmax

(
n
m

)
pm
Di

(1− p
Di

)n−m d = lmax

0 otherwise

. (18)

This follows since the probability that an information particle is delivered from a specific square

in the grid is independent from other squares, and the maximum load an MT can have is lmax.
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The PMF P (y(T ) | x) can be calculated using this technique with a computational complexity

of O( T
∆τ
N). This is significantly smaller than the computational complexity of full simulation

O(L T
∆τ
Nxmax), which was used in previous works.

B. Modeling ATMC Using Multiple MTs

In the previous section, we derived a Markov chain model for ATMC systems employing a

single MT. To do this we defined a single MT trip as the motion of the MT from the receiver

zone to the transmission zone and back, and used a random variable K(T ) to represent the

number of trips during the TPCU interval T . When there is only one MT in the channel, the

trips are ordered (i.e. each trip happens after the previous trip) and therefore the Markov property

of Equation (10) holds. However, if there are multiple MTs in the channel, two or more MTs

might be visiting the transmission zone simultaneously or be in between trips. Therefore, the

number of particles delivered at a given time interval depends on all the MTs and the Markov

property of Equation (10) does not hold. Because of the interdependence of MTs and the fact

that the Markov property does not hold, modeling ATMC when multiple MTs are inside the

channel is extremely difficult. To overcome these issues, we discretize time instead of MT trips.

We discretize the TPCU value T into M equal time intervals of ∆t as

T = M∆t. (19)

Therefore, T is broken down into M time steps. Let m = 1, 2, . . .M be each of these time

steps. Furthermore, let Xm be the number of information particles at the transmission zone at

the end of the mth time step, Ym be the total number of information particles already delivered

to the receiver at the end of the mth time step, and Dm be the number of information particles

delivered during the mth time step. Therefore, Dm ∈ {0, 1, 2, · · · , Xm−1} is a random variable

representing the number of particles delivered during the mth time step of length ∆t. Each time

step is related to the next time step by the following properties

Xm = Xm−1 −Dm,

Ym = Ym−1 +Dm, (20)

where we assume X0 = X is the number of particles released by the transmitter at the beginning

of the communication session, and Y0 = 0 is the number of particles initially at the receiver.
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With this new discretization we can derive a Markov chain model similar to the one we derived
in the previous section for ATMC channels with a single MT. In this case the probability transition
matrix given x particles are released by the transmitter is given by

P(x) =



P (0|x) P (1|x) P (2|x) · · · P (x|x)

0 P (0|x− 1) P (1|x− 1) · · · P (x− 1|x− 1)

0 0 P (0|x− 2) · · · P (x− 2|x− 2)

. . .
. . .

. . .
. . .

. . .

· · · 0 P (0|2) P (1|2) P (2|2)

· · · 0 0 P (0|1) P (1|1)

· · · 0 0 0 1


(21)

where transition probabilities are in the form P (Dm = d|Xm−1 = x) for d = 0, 1, 2, · · · , Xm−1.

Because of the dependencies between multiple MTs discussed earlier, deriving a closed-form

expression for the transition probabilities is not possible. However, the transition probabilities

can be estimated using Monte Carlo simulations by using ∆t instead of T in line 5 of Algorithm

1. The duration of these Monte Carlo simulations would be shorter than full simulations used in

the past since the time step ∆t is smaller than the TPCU value T . The computational complexity

of these Monte Carlo simulation are O(L∆t
∆τ
NxmaxQ). Therefore, in general we would expect

M folds improvement in computation time of the simulations compared to full simulations of

the ATMC channels. Moreover, we would expect the the estimated PMFs be more accurate for

smaller M (i.e. larger time steps ∆t) and less accurate for larger M (i.e. smaller time steps ∆t).

This is because smaller time steps capture the motion of the MTs for a shorter amount of time

and therefore calculated transition probabilities would be less accurate. Similarly, larger time

steps capture a longer duration of motion of the MTs, which results in more accurate estimation

of transition probabilities.

V. RESULTS AND DISCUSSIONS

We verify the accuracy of our proposed model with respect to the full computer simulation

environment used in [12], [13]. To compare the PMFs obtained using our Markov chain models

with the PMFs obtained using full Monte Carlo simulation, we use Kullback-Leibler (K-L)

distance (also known as Kullback-Leibler divergence or relative entropy) [41]. K-L distance is

calculated as

D (Psim ‖ Pmodel) =
∑

y(T )∈X

Psim log
Psim

Pmodel
, (22)
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where Psim and Pmodel represent the PMF P (y(T ) | X = x), estimated using full Monte Carlo

simulations or our Markov chain models, respectively. K-L distance signifies the amount of

information lost if Pmodel is used instead of Psim.

To better quantify this value, instead of using it directly we use the ratio of K-L distance

over the entropy of the PMF Psim(y(T ) | X = x), which is obtained through full Monte Carlo

simulations. In this case the entropy is calculated as

H(Y (T )|X = x) =

−
∑

y(T )∈X

Psim(y(T ) | X = x) logPsim(y(T ) | X = x), (23)

and it signifies the average number of bits needed to represent the PMF. Using Equations (22)

and (23) our performance measure is given by

R =
D (Psim ‖ Pmodel)

H(Y (T )|X = x)
. (24)

This ratio gives a direct measure of normalized error for the estimation. In general the closer the

ratio is to zero, the better our models estimate the PMFs. However, it is still difficult to decide

what would be a good value for this ratio (i.e. for what ratio the Markov chain calculated PMFs

are acceptable compared to full Monte Carlo simulations).

To further investigate the accuracy of our models, we calculate an actual channel parameter

known as channel capacity using both full simulation based PMFs and Markov chain model

based PMFs. For calculating the channel capacity, we assume that the information is encoded in

the number of information particles transmitted. The channel capacity is calculated using PMF

P (y(T ) | x) as

C = max
P (x)

I(X;Y (T )), (25)

where I(X;Y (T )) is the mutual information between X and Y (T ), defined as

I(X;Y (T )) = E

[
log2

P (y(T ) | x)∑
x P (y(T ) | x)P (x)

]
, (26)

where E[·] represents expectation.

Mutual information can be calculated if the two PMFs P (y(T ) | x), and P (x) are known.

Channel capacity is the maximum mutual information over all possible PMFs P (x). If P (y(T ) |

x) is known, we can calculate mutual information for any P (x). Moreover, the Blahut-Arimoto

algorithm [42], [43] can be used to find the exact PMF P (x) that maximizes the mutual



19

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
a

ti
o

 o
f 
K

L
 D

is
ta

n
c
e

 t
o

 E
n

tr
o

p
y

x (number of particles released by transmitter)

TPCU=1000s

 

 

Rec 40x40 Sim Tran

Poly R23.78 N8 Sim Tran

Poly R25.57 N20 Sim Tran

Rec 40x40 Eq. (18) Tran

Poly R23.78 N8 Eq. (18) Tran

Poly R25.57 N20 Eq. (18) Tran

Fig. 4: The ratio of K-L distance between the simulation and model based PMFs to the entropy

of simulation based PMFs for different values of x (the number of particles released by the

transmitter). Channels contain only a single MT.

information. This follows because mutual information is convex with respect to P (x) and Blahut-

Arimoto algorithm performs convex optimization to find the exact maximum. Therefore, if PMF

P (y(T ) | x) is known, we can calculate the channel capacity of the molecular communication

system in a straightforward manner.

In the rest of this section, the parameters used in all Monte Carlo simulations are as follows:

simulation time steps of ∆T = 0.1 seconds (this is different from the discretization time step

∆t introduced in the previous section), MT diffusion coefficient D = 2.0 · 10−3 µm2/s, average

speed of the MT vavg = 0.5 µm/s, and persistence length of the MT trajectory Lp = 111 µm.

We also assume the size of the information particles is 1µm, the average length of the MTs is

10µm, and each MT can load up to 5 information particles in one trip from the transmission

zone to the receiver zone. These parameters are all selected based on experimental observations

of DNA covered MTs moving over a kinesin covered substrate [35], [40].
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A. ATMC Channels Using a Single MT

First, we consider the Markov chain model derived for the channels with a single MT. For this

case, three different channels are considered: a square channel of 40 µm × 40 µm, an 8-sided

regular polygon (octagon) channel with radius 23.78 µm, and a 20-sided regular polygon with

radius 25.57 µm. The grid transmission zone structure is always assumed to be along the channel

walls, which was shown to be the optimal design in [29].

We consider our Markov models for single MT channels, where the transition probabilities

P (Di | Xi−1) can be estimated using two different techniques: Monte Carlo simulations, and

Equation (18). When Monte Carlo simulations are used to estimate the transition probabilities,

two sets of simulations are performed to estimate Ps(D1 | X0), the number of particles delivered

during the first trip, and P (Dj|Xj−1), the number of particles delivered during subsequent trips

(j = 2, 3, . . .). When Equation (18) is used for calculation of transition probabilities, an estimate

for pv (the probability that a square in the grid loading structure is visited) is required. This

probability can be obtained from the same simulation that is used to estimate the PMF of the

number of MT trips P (k(T )).

Figure 4 shows the results for the TPCU value of T = 1000 seconds. The ratio of K-L distance

between the simulation and model based PMFs to the entropy of simulation PMFs is plotted

against different values of x (number of particles released by the transmitter). We use the term

“Sim Tran” in the plot legend to indicate the case where the transition probabilities are calculated

using Monte Carlo simulations, and the term “Eq. (18) Tran” to indicate the case where transition

probabilities are calculated using Equation (18). In practice large number of information particles

can be released by the transmitter. At the same time, channel capacity increases with the size of

the symbol set. Therefore, the value of this ratio at xmax = 34 is considered. We can see that,

as expected, when simulations are used to estimate the PMFs, lower ratio is achieved. However,

transition probabilities and hence the PMFs can be estimated more quickly when Equation (18)

is used.

Another property observed in Figure 4 is that for “Eq. (18) Tran” plots the R ratio increases

as xmax increases. This follows because of some independence assumptions made in derivation

of Equation (18), which simplifies the model. In particular, we have assumed that the probability

that a particle is in a given square during the ith MT trip is xi−1/n. However, this assumption
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Fig. 5: Channel capacity in bits versus xmax, maximum number of information particles that

can be released by the transmitter, calculated based on full simulations (solid lines), and Markov

chain models (points). Channels contain only a single MT.

does not take into consideration the fact that the particle may have already been picked up from

this particular square. In other words, for each trip the remaining particles are redistributed across

the squares. This error increases as the symbol size increases and hence the increasing R ratio.

To further investigate the estimated PMFs, and determine if they are accurate enough to

characterize the channel, we use them to calculate the channel capacity, which is one of the

most important parameters of any communication channel. In particular, we calculate the channel

capacity based on the PMF P (y(T ) | x) obtained using three different methods: full Monte Carlo

simulations, our Markov chain model with full simulation-based transition probabilities, and our

Markov chain model with transition probabilities estimated using Equation (18).

Figure 5 shows the calculated channel capacities versus xmax, the maximum number of

particles the transmitter can transmit. The solid lines represent the channel capacities calculated

using full Monte Carlo simulations, while the point plots show the channel capacities calculated

using our Markov chain models. From the figure we can see that when the Markov chain model
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with simulation estimation of transition probabilities is used, the estimated channel capacities are

very close to the ones obtained from full simulations. Although, the channel capacities calculated

using our model with transition probabilities based on Equation (18) are not as accurate, they

are still relatively close to the ones obtained using full simulations, and can be calculated much

faster. Comparing Figures 4 and 5, we can see that although the estimated PMFs may not be

extremely accurate, the estimated channel capacities are fairly accurate. Therefore, since we

are modelling the molecular communication channel from a telecommunication perspective, our

model’s performance is satisfactory.

Finally, we compare the computer simulation times required for calculating the PMF P (y(T ) |

x) based on three different cases: full simulation, Markov chain model based on simulation esti-

mation of P (k(T )), Ps(D1 | X0), and P (Dj|Xj−1), and Markov chain model based on simulation

estimation of P (k(T )) and pv and using Equation (18). All our Monte Carlo simulations use

the same propagation engine for the motion of the MT inside the channel. Therefore, although

each simulation estimates a different PMF, the propagation engine is the same between them.

Therefore, the algorithm used for computing different PMFs are computationally very similar.

The simulation times are all obtained by running our simulation code on the same notebook:

Mac Book Pro (mid 2010) with 2.66 GHz Intel Core i7, 8GB 1067MHz DDR3 RAM, and Mac

OS X version 10.7.4. The simulations were written in Matlab [44] for Mac OS X. Figure 6

shows the resulting simulation times for calculating these PMFs, when TPCU value is T = 2000

seconds, the number of information particles that are released by the transmitter ranges from 1

to 34, and the number of iteration used for each of the Monte Carlo simulations is 5000.

When instead of full simulations, the Markov model is used with simulated transition prob-

abilities the simulation times are reduced by more than half. Moreover, when Equation (18)

is used to estimate the transition probabilities, the simulations duration is reduced by more

than 25 times compared to full simulations. For example, for the 40 × 40 square channel the

simulation durations are about 77 hours, 26 hours and 2 hours for the full simulation, Markov

chain model with simulation estimation of transition probabilities, and Markov chain model

with transition probabilities calculated using Equation (18), respectively. Although in the latter

case the estimated PMF is not as accurate as the other two methods, the gains in terms of

simulation time are significant compared to the loss in accuracy. From these results, we propose

using Equation (18) and the Markov model for initial system design and optimization, and using
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x = 1, 2, . . . , 34, and 5000 iteration per each Monte Carlo simulation.

simulation based calculation of transition probabilities for final stages of system design.

B. ATMC Channels Using Multiple MTs

In this section we consider the Markov chain channel model for ATMC using multiple MTs.

We use the same three channels that were considered in the previous section. To get an accurate

estimation of the transition probabilities, the discretization time steps ∆t must be such that at

least a single MT trip is captured in each time step for most of the MTs in the channel. Let P

be the perimeter of the channel, and vavg be the average speed of the MTs as defined earlier.

Because MTs mostly follow the walls of the channel, the desirable values for ∆t are given by

∆t ≥ P

vavg

. (27)

In general the larger the value of ∆t is compared to the ratio on the right hand side of the

equation, the better the transition probabilities are estimated. This follows because in this case

more MT trips are captured in each time steps which results in a more accurate estimation of

the transition probabilities of our Markov chain model.
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Channels contain multiple MTs.

Figure 7 plots the ratio of K-L distance between the simulation and model based PMFs to the

entropy of simulation PMFs for different values of x. We assume there are 5 MTs in the square

channel, 4 MTs in the octagon channel, and 3 MTs in the 20-sided polygon channel. We have

chosen different numbers to demonstrate that the model works for any number of MTs. For the

channels considered in this plot we assume ∆t = 500 seconds (this value satisfies Equation (27)

criterion), and the TPCU is 1000 seconds (i.e. the number of steps M = 2).

In practice large number of information particles can be released by the transmitter. At the

same time, channel capacity increases with the size of the symbol set. Therefore, the value of

this ratio at xmax = 34 is considered. For each channel the number of time steps is M = 2, and

therefore the discretization intervals are one half the TPCU duration. Therefore, the transition

probabilities can be calculated in one half the time it takes for full simulations.

To further investigate the accuracy of the estimated PMFs, we use them to calculate the channel

capacity, which is one of the most important parameters of any communication channel. Figure

8 compares the channel capacity of each channel obtained through full simulations (lines plots),
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Fig. 8: Channel capacity in bits versus xmax, maximum number of information particles that can

be released by the transmitter, for both full simulations and Markov chain model for multiple

MTs: (a) 20-sided regular polygon channel with radius of 25.57 µm, (b) octagon channel with

radius of 23.78 µm, and (c) square channel of length 40 µm.

to the ones calculated using our proposed Markov chain model (point plots). For each channel,

the number MTs are taken to be 3, 4, and 5. For both polygon channels ∆t = 400 seconds and

T = 800 seconds, and for the square channel ∆t = 550 seconds and T = 1100 seconds. We

chose these value since the plots for different number of MTs are all visible on a single plot at

these durations, and to show that our model works for different values of T . As can be seen the

channel capacities can be estimated fairly accurately at half the time it takes for full simulations.

Moreover, by increasing the value of M (i.e. decreasing the discretization time intervals) channel

capacities can be estimated more quickly at the cost of a loss in accuracy.

The PMFs P (y(T ) | x) estimated using our Markov chain model are fairly accurate and

become more accurate as the time step durations ∆t increases compared to the term on the right

hand side of Equation (27). This effect can be seen in the figure; the octagon channel has a better

estimated channel capacity, since it has a smaller perimeter compared to the 20-sided polygon

channel for different number of MTs. Therefore, for ∆t = 400 more MT trips are captured in

estimated tradition probabilities of the Markov chain model, which results in a slightly more

accurate estimation of channel capacity.
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Fig. 9: Channel capacity in bits versus the number of MTs for a square channel with 40 µm

sides and xmax = 34. Capacity increases linearly with the number of MTs.

Finally, as can be seen channel capacity increases with the number of MTs for all channels.

In Figure 9, the channel capacity is plotted for different number of MTs in the channel. The

channel is a square channel with 40 µm sides, and the size of the message set is 34. As can be

seen capacity increases linearly with number of MTs for each value of T .

VI. CONCLUSION AND FUTURE WORK

In this paper we have considered active transport molecular communication (ATMC), where

microtubule (MT) filaments moving over kinesin covered substrate are used as carriers of

information particles from a transmitter to a receiver. We developed a set of Markov chain

channel models which could be used to reduce the amount of simulations that are required for

studying this class of molecular communication systems. We first considered single MT channels,

and then developed a model for multi-MT channels. Finally, we compared the accuracy of the

proposed Markov chain model with full Monte Carlo simulations used in previous works. Based

on the obtained results we showed when our Markov chain model is used with simulation based



27

estimation of transition probabilities, the PMFs are estimated fairly accurately compared to full

simulations, with less than half the amount of simulation time. Moreover, we showed when

the presented mathematical formula is used to estimate the transition probabilities, there was a

loss in accuracy compared to full simulation based method. However, the amount of necessary

simulations dropped significantly by more than 25 times the case where full simulation was

employed. Similarly, for the channels with multiple MT, we showed that the PMFs can be

estimated using our Markov chain model fairly accurately at a fraction of the time of full

simulations.

The derived Markov chain channel models have a number of benefits. First, because this type

of ATMC is ideal for many on-chip applications, our models could be used as a mathematical

framework to solve many different design, engineering, and optimization problems in a timely

manner. Second, these models are much more accurate than our previous model [29], which

was used as a tool for optimizing the shape of the transmission zone. Third, the proposed

models can be considered as an analytical toolbox and can be potentially extended to other

propagation schemes. Moreover, more realistic assumptions can be incorporated into the model

in future works. Finally, the relation between the developed models in this paper and previously

developed models such as equivalent queueing system with multiple servers merits investigation

as part of future works.
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